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1 Introduction

Downside risk is currently the focus of a large and growing body of literature in financial economics.

It corresponds to the financial risk of a security, a portfolio or any other type of investment, borne

by an investor in case of an adverse economic or financial scenario. The analogue if the scenario is

favourable, is called upside uncertainty. The asymmetric treatment of downside risk versus upside

uncertainty has long been well-accepted among practitioners and academic researchers (Roy 1952;

Markowitz 1959), and led to new developments in asset pricing and financial risk management,

such as the concept of the value-at-risk and the expected shortfall, as well as axiomatic approaches

to preferences that allow investors to place greater weights on adverse market conditions in their

utility functions. These developments include the lower-partial moment framework of Bawa and

Lindenberg (1977), the prospect theory of choice of Kahneman and Tversky (1979), the theory

of disappointment aversion of Gul (1991), recently generalized by Routledge and Zin (2010) who

embed them in the recursive utility framework of Epstein and Zin (1989). These new theories

suggest priced downside risks in the capital market equilibrium.

In this article, we explicitly derive and test the cross-sectional predictions of an intertemporal

equilibrium asset pricing model, where the representative investor has generalized disappointment

aversion (GDA) preferences and macroeconomic uncertainty is time-varying. In particular, if the

investor’s risk aversion parameter is larger than one and his elasticity of intertemporal substitution

is finite, as generally agreed in the asset pricing literature, then the disappointing event (D) may

be triggered not only by a fall in the market return, but also by a rise in market volatility, to the

contrary of existing asset pricing studies on downside risks (see for example Bawa and Lindenberg

1977; Ang, Chen and Xing 2006; Post et al. 2010; Brownlees and Engle 2011 among others). The

investor is disappointed if the return of holding a long position in the market index combined with

a short position in the volatility index falls below a constant threshold. This threshold as well as

the ratio of the short versus the long position depend on the investor’s preference parameters.

The GDA investor exhibits both risk aversion (i.e. aversion to regular betas on market return

and on changes in market volatility) and disappointment aversion (i.e. aversion to expected down-

side losses). We refer to the combination of both risk and disappointment as the effective risk. We
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explicitly disentangle the components of the asset premium that are due to risk exclusively, from

those that are due to disappointment exclusively, and from those that are due to the interaction

between risk and disappointment. An investor with expected utility (henceforth EU) preferences

requires two premiums to invest in a risky asset. These two premiums are compensations for covari-

ations with the market return, Cov (Rei , rW ), and with changes in market volatility, Cov
(
Rei ,∆σ

2
W

)
,

and are exclusively due to risk aversion, since they are the only premiums required by a risk averse

but disappointment neutral investor.

In comparison to the EU investor, the GDA investor requires three additional premia that

compensate for covariation with three two-asset option-like payoffs, contingent to the disappointing

event. The first premium is a compensation for the covariance with a long binary cash-or-nothing

option, Cov (Rei , I (D)), where I (·) is the indicator function that takes the value 1 if the condition

is met and 0 otherwise. We show that this premium is exclusively due to disappointment aversion,

since it is the only premium required by a risk neutral but disappointment averse investor. The

second premium is a compensation for the covariance of the asset returns with a short put option on

the market index, Cov (Rei , rW I (D)), and the third premium is a compensation for the covariance

with a long call option on the volatility index, Cov
(
Rei ,∆σ

2
W I (D)

)
. These latter compensations

are not exclusively due to either risk aversion or disappointment aversion, as they are required if

and only if the investor is both risk averse and disappointment averse. If the investor’s elasticity of

intertemporal substitution is infinite, then changes in market volatility and the call option on the

volatility index are not priced. Besides, only a fall in the market return may cause disappointment,

consistent with measures of downside risks considered in the literature.

We explore the cross-sectional predictions of the model using all common stocks traded on the

NYSE, AMEX and NASDAQ markets covering the period from July 1963 to December 2010. The

main results of the paper relate to the cross-sectional pricing of the three option-like payoffs on

market and volatility indexes. Our empirical methodology uses portfolio sorts on individual stock

exposures to these options, as well as cross-sectional regressions of Fama and MacBeth (1973) to

estimate these factor risk premia. Our main finding is that options on market and volatility indexes

are highly significant factors in the cross-section of stock returns. Across individual stocks, we see
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a wide dispersion in sensitivities to options, which generates cross-sectional variation in the risk

premia attributed to these factors. The signs of estimated factor risk premia are all consistent with

the theory, and their economic magnitudes show that a long/short strategy on exposure to each of

these options pays on average more than 5% per annum, and these rewards are not explained by

coskewness, size, value, and momentum factors.

We complement, in several ways, the existing theoretical and empirical asset pricing literature

on how asset prices are affected by downside risks. Downside risks may be measured through the

market downside beta, empirically examined in the cross-section of stock returns by Ang, Chen and

Xing (2006), the semi-variance beta due to Bawa and Lindenberg (1977) and empirically examined

in the cross-section of stock returns by Post et al. (2010), or other measures such as the marginal

expected shortfall, estimated and empirically examined for the regulation of systemic risk in US

financial firms by Brownlees and Engle (2011). In all these studies, the downside event is a sufficient

decline in the market index, corresponding to a special case of the GDA model with infinite elasticity

of intertemporal substitution. The literature does not exactly tell what factors the downside beta,

the semi-variance beta, and the marginal expected shortfall measure exposures to. We show that

these measures are explicit linear combinations of the same three multivariate betas (on the market

return, on the long binary cash-or-nothing and the short put options on the market index) and

provide the associated coefficients. Their analogue in the general GDA model where changes in

market volatility and the long call option on the volatility index are also priced, include betas on

these two latter factors in the linear combinations.

While little or nothing has been said about volatility downside risk, we demonstrate that a

dynamic equilibrium asset pricing model with generalized disappointment aversion preferences and

time-varying macroeconomic uncertainty provides a convenient theoretical setup for examining

the empirical evidence that volatility downside risk is priced. Ultimately, we provide a unified

theoretical framework that can explain the empirical findings that asset sensitivities to the market

return and to changes in market volatility are priced (Ang, Hodrick, Xing and Zhang 2006; Adrian

and Rosenberg 2008), that the market downside beta, the semi-variance beta and the marginal

expected shortfall are priced (Ang, Chen and Xing 2006; Post et al. 2010; Brownlees and Engle
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2011), and that the volatility downside beta and the relative downside potential of an asset are

priced. Again, there is little or no empirical evidence regarding the two latter measures, and we

view this as an important contribution to the literature. Furthermore, being motivated by dynamic

consumption-based equilibrium asset pricing and behaviorial decision theory, our setup attempts to

extend research on systemic financial risk onto many of the directions advocated by Brunnermeier

et al. (2010).

We also examine the empirical performance of our cross-sectional model on standard sets of

sorted portfolios: size, book-to-market, momentum, long-term reversal and industry portfolios.

Our results still compare to those obtain on individual stocks. In terms of the pricing errors, our

five-factor model with market beta, volatility beta and exposures to the three options provides a

significant improvement over the standard CAPM model. It is comparable to the four-factor model

of Carhart (1997), but in contrast, it has the benefit of being motivated by dynamic consumption-

based equilibrium asset pricing and behaviorial decision theories. We decompose the portfolio

premia into parts attributable to each of the five factors from the model. We find that the three

options account for significant parts of the total premium required to invest in stocks, and that

they are relevant for interpreting differences in risk compensation across size, book-to-market and

momentum portfolios. We finally show that our results are robust to different data subsamples,

to alternative measures of market volatility and to alternative specifications of the disappointment

region.

The balance of the paper is organized as follows. In Section 2, we present and develop the

theoretical setup from which we derive the implied cross-sectional model and discuss the option

interpretation of the new factors. Section 3 derives the multivariate cross-sectional linear beta

pricing model and show how different measures of market and volatility downside risks related

to exposures to option payoffs and their underlying instruments. Section 4 contains an extensive

empirical assessment of the model. Section 5 concludes. An external appendix, available from

authors’ web pages1, contains additional material and proofs.

1e.g. http://www.adamfarago.com/research
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2 Theoretical setup

2.1 Assumptions on investors’ preferences

We consider a representative investor with generalized disappointment aversion preferences (GDA)

of Routledge and Zin (2010). Following Epstein and Zin (1989) and Weil (1989), such an investor

derives utility from consumption, recursively as follows:

Vt =

{
(1− δ)C

1− 1
ψ

t + δ [Rt (Vt+1)]
1− 1

ψ

} 1

1− 1
ψ if ψ > 0 and ψ 6= 1

= C1−δ
t [Rt (Vt+1)]δ if ψ = 1.

(2)

The investor then maximizes this lifetime utility subject to the budget constraint

Wt+1 = (Wt − Ct)RW,t+1, (3)

where W is the total wealth and RW is the simple gross return to the claim on aggregate consump-

tion C, which we refer to as the market return.

Equation (2) states that the current period lifetime utility Vt is a combination of current con-

sumption Ct, and Rt (Vt+1), the certainty equivalent of next period lifetime utility, implicity defined

by:

U (R) = E [U (V )]− `E [(U (κR)− U (V )) I (V < κR)] (4)

where

U (X) =
X1−γ − 1

1− γ
if γ > 0 and γ 6= 1

= lnX if γ = 1,

(5)

and where the parameter ` ≥ 0 modulates the importance of disappointment versus satisfaction,

while the parameter 0 < κ ≤ 1 modulates both the amplitude and the frequency of disappointment.

When ` is equal to zero, R reduces to expected utility (EU) preferences, while Vt represents the

Epstein and Zin (1989) recursive utility. When ` > 0, outcomes lower than κR receive an extra
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weight, decreasing the certainty equivalent. Thus, the parameter ` is interpreted as a measure of

disappointment or loss aversion, while the parameter κ is the percentage of the certainty equivalent

such that outcomes below it are considered disappointing. The special case κ = 1 corresponds the

original disappointment aversion preferences of Gul (1991).

With EU preferences, Hansen et al. (2008) derive the stochastic discount factor in terms of the

continuation value of utility of consumption, as follows:

M∗t,t+1 = δ

(
Ct+1

Ct

)− 1
ψ
(

Vt+1

Rt (Vt+1)

) 1
ψ
−γ

= δ

(
Ct+1

Ct

)−γ ( Vt+1/Ct+1

Rt (Vt+1) /Ct

) 1
ψ
−γ
. (6)

If γ = 1/ψ, equation (6) corresponds to the stochastic discount factor of an investor with time-

separable utility and constant relative risk aversion, where only changes in the level of consumption

determines an asset premium. Otherwise, there is an additional premium to compensate for changes

in the welfare valuation ratio.

Following Hansen et al. (2007) and Routledge and Zin (2010), the intertemporal marginal rate

of substitution of an investor with GDA preferences is given by:

Mt,t+1 = M∗t,t+1

(
1 + `I (Dt+1)

1 + `κ1−γEt [I (Dt+1)]

)
, (7)

where I (·) is an indicator function that takes the value 1 if the condition is met and 0 otherwise,

and Dt+1 denotes the disappointing event Vt+1 < κRt (Vt+1) . Equation (7) shows that, compared

to the EU stochastic discount factor, the GDA stochastic discount factor includes an additional

term that will add a premium for expected losses conditional upon disappointment.

2.2 Substituting out consumption

Using the second equality in (6), the logarithm of M∗t,t+1 can be written as

m∗t,t+1 = ln δ − γ∆ct+1 −
(
γ − 1

ψ

)
∆zV,t+1 (8)

6



where the processes in the right-hand side of equation (8) are defined by

∆ct+1 ≡ ln

(
Ct+1

Ct

)
= lnCt+1 − lnCt and ∆zV,t+1 ≡ ln

(
Vt+1

Ct+1

)
− ln

(
Rt (Vt+1)

Ct

)
(9)

and represent respectively the change in the log consumption level (consumption growth), and the

change in the log welfare valuation ratio (welfare valuation ratio growth). Notice that the stochastic

discount factor depends directly on current consumption growth, and indirectly on future consump-

tion growths through the welfare valuation ratio growth. It turns out that the disappointing event

is equivalent to ∆ct+1 + ∆zV,t+1 < lnκ.

Following Epstein and Zin (1989), the log return on wealth is related to consumption growth

and the welfare valuation ratio growth through

rW,t+1 = − ln δ + ∆ct+1 +

(
1− 1

ψ

)
∆zV,t+1. (10)

If consumption growth is substituted out from the log SDF using the above relationship, we get

m∗t,t+1 = (1− γ) ln δ − γrW,t+1 −
(
γ − 1

ψ

)
∆zV,t+1, (11)

and the disappointing event is equivalent to rW,t+1 + (1/ψ) ∆zV,t+1 < ln (κ/δ) .

Note that the return rW,t on the wealth portfolio is not directly observed by the econometrician.

The return to a stock market index is sometimes used to proxy for this return as in Epstein and

Zin (1991). Also, the welfare valuation ratios zV,t ≡ ln (Vt/Ct) and zR,t ≡ ln (Rt (Vt+1) /Ct) are

unobservable. Following Hansen et al. (2008) and Bonomo et al. (2011), we can exploit the dynamics

of aggregate consumption growth and the recursion (2) in addition to the definition of the certainty

equivalent (4) to solve for the unobserved welfare valuation ratios.

From equation (10), it follows that stochastic volatility of aggregate consumption growth is a

sufficient condition for stochastic volatility of the market return. In that case, market volatility

measures time-varying macroeconomic uncertainty. In all what follows, this additional assumption

is coupled with our assumption on investors’ preferences. More specifically, assume for example
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that the logarithm of consumption follows a heteroscedastic random walk as in Bonomo et al.

(2011), were the stochastic volatility of consumption growth is an AR(1) process that can be well-

approximated in population by a two-state Markov chain as shown in Garcia et al. (2008). Then,

it can be shown that the welfare valuation ratios satisfy

zV,t = ϕV 0 + ϕV σσ
2
W,t and zR,t = ϕR0 + ϕRσσ

2
W,t (12)

were σ2
W,t ≡ V art [rW,t+1] is the conditional variance of the market return, and were the drift

coefficients ϕV 0 and ϕR0 and the loadings ϕV σ and ϕRσ depend on investor’s preference parameters

and on parameters of the dynamics of consumption volatility. In this case, equation (11) becomes

m∗t,t+1 = (1− γ) ln δ∗ − γrW,t+1 −
(
γ − 1

ψ

)
ϕV σ∆σ2

W,t+1, (13)

and the disappointing event is equivalent to rW,t+1 + (1/ψ)ϕV σ∆σ2
W,t+1 < ln (κ/δ∗) , where

∆σ2
W,t+1 ≡ σ2

W,t+1 − ϕσ2
W,t, ln δ∗ = ln δ +

1

ψ
(ϕV 0 − ϕR0) and ϕ =

ϕRσ
ϕV σ

.

Our definitions and notations for ∆zV,t+1 and ∆σ2
W,t+1 presume that zR,t ≈ zV,t, meaning that

ϕRσ ≈ ϕV σ, and consequently ϕ ≈ 1.2 This shows that changes in the welfare valuation ratio

can empirically be proxied by changes in a stock market volatility index, where volatility can be

estimated using a generalized autoregressive conditional heteroscedasticity (GARCH) model, can

be computed from high-frequency index returns (realized volatility), or can be measured by the

option implied volatility (V IX).

Disappointment may occur due to a fall in the market return. It may also occur following a

sharp rise in market volatility. This means that the loading coefficient ϕV σ of the welfare valuation

ratio onto the market volatility must be negative. In all what follows, we take as given that ϕV σ < 0

and refer the reader to the external appendix where we show in a calibration assessment that this

important theoretical implication of the model holds for a broad range of reasonable values of

2We show in the external appendix that this indeed is the case for reasonably calibrated values of pref-
erence parameters and consumption dynamics.
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preference parameters and endowment dynamics.

2.3 Cross-sectional implications of GDA preferences

For every asset i in the economy, optimal consumption and portfolio choice by the representa-

tive investor induces a restriction on its simple gross return, Ri,t+1, that is implied by the Euler

condition:

Et
[
H∗t,t+1 (1 + `I (Dt+1))Rei,t+1

]
= 0 (14)

where Rf,t+1 denotes the risk-free simple gross return, Rei,t+1 = Ri,t+1 −Rf,t+1 denotes the excess

return of asset i over the risk-free return, and H∗t,t+1 denotes the risk-adjusted density defined by

H∗t,t+1 =
M∗t,t+1

Et

[
M∗t,t+1

] ≈ 1 + θ∗t
(
m∗t,t+1 − Et

[
m∗t,t+1

])
, (15)

where θ∗t is a positive coefficient that ensures that the volatility of M∗t,t+1 remains unchanged under

the approximation, or that the mean squared approximation error is minimal.

The asset premium, after some algebraic manipulation, can be written as

Et

[
Re

i,t+1

]
=

1

1 + `πH
t

[
Covt

(
Re

i,t+1,−H∗t,t+1

)
+ `Covt

(
Re

i,t+1,−H∗t,t+1I (Dt+1)
)]

(16)

where πHt = EH
t [I (Dt+1)] is the risk-adjusted disappointment probability, and where EH

t [·] denotes

the expectation under the risk-adjusted density H∗t,t+1.

Equation (16) shows that the asset effective risk premium is determined by two covariances.

The first covariance is the compensation for regular risks, while the second covariance reveals

compensation for downside risks and expected downside losses conditional upon disappointment. If

the investor is simply risk averse and disappointment neutral (` = 0), effective risk premium is solely

a compensation for regular risks, the covariance between the asset excess return and the regular

risk-adjustment density H∗t,t+1. An investor who is particularly sensitive to downside losses (` > 0)

requires an additional compensation. The required compensation is proportional to the covariance

between the asset excess return and the product H∗t,t+1I (Dt+1), the coefficient of proportionality

being determined by the investor’s disappointment aversion parameter `.
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Using the approximation (15) in the pricing relation (16), we show that the cross-sectional

risk-return tradeoff may be written in linear covariance form as

Et
[
Rei,t+1

]
= pW,tσiW,t + pX,tσiX,t + pD,tσiD,t + pWD,tσiWD,t + pXD,tσiXD,t (17)

where σiW,t ≡ Covt

(
Rei,t+1, rW,t+1

)
denotes the covariance between the asset excess returns and

the market return, σiX,t ≡ Covt
(
Rei,t+1,∆σ

2
W,t+1

)
denotes the covariance between the asset excess

returns and changes in market volatility, and where σiWD,t ≡ Covt

(
Rei,t+1, rW,t+1I (Dt+1)

)
and

σiXD,t ≡ Covt

(
Rei,t+1,∆σ

2
W,t+1I (Dt+1)

)
and σiD,t ≡ Covt

(
Rei,t+1, I (Dt+1)

)
denote covariances

between the asset excess returns and outcomes that are all contingent to the disappointing event.

The risk prices associated to these covariance risk measures are given by:

pW,t =
θ∗t

1 + `πHt
γ and pX,t =

θ∗t
1 + `πHt

(
γ − 1

ψ

)
ϕV σ,

pD,t = − `

1 + `πHt

(
1 + γθ∗t µW,t +

(
γ − 1

ψ

)
ϕV σθ

∗
t µX,t

)
,

pWD,t =
θ∗t

1 + `πHt
`γ and pXD,t =

θ∗t
1 + `πHt

`

(
γ − 1

ψ

)
ϕV σ,

(18)

where µW,t ≡ Et [rW,t+1] and µX,t ≡ Et

[
∆σ2

W,t+1

]
represent the means of the market return and

changes in market volatility, respectively.

2.4 Interpreting the new factors

Equation (17) corresponds to a linear multifactor representation of expected excess returns in the

cross-section. The unrestricted model is a five-factor model which we refer to as GDA5 throughout

the rest of the paper. It states that, in addition to the market return and changes in market

volatility, three additional factors command a risk premium. These factors are all payoffs that

are contingent to the disappointing event, making them interpretable as options. To illustrate the

option interpretation of the new factors in more detail, consider first the special case ψ =∞. This

restriction implies that pX,t = pXD,t = 0, so the cross-sectional model (17) reduces to a three-factor

model where σiW,t, σiD,t, and σiWD,t are the only priced risks, henceforth GDA3. Additionally,

10



the disappointing event reduces to rW,t+1 < ln (κ/δ) , that is, the investor is disappointed if the

market return falls below a constant threshold determined by investor’s preference parameters.

This enables us to give a straightforward interpretation of the priced factors in the GDA3 model.

The GDA3 disappointment indicator can be written as

I (Dt+1) = I

(
Wt+1 <

κPt
δ

)
, (19)

where Pt denotes the price of the claim to aggregate consumption. This is the payoff of a long

position in a binary cash-or-nothing put option on aggregate wealth, with a strike price of κPt/δ

and maturing in one period. In the empirical section, rW,t+1 is measured by the stock market index

return, so I (Dt+1) is the payoff of a regular binary cash-or-nothing put option on the stock market

index. If κ = δ, the option is at-the-money, while for κ < δ the option is out-of-the-money.

Likewise, we show that the factor rW,t+1I (Dt+1) is approximately equivalent to

rW,t+1I (Dt+1) = − 1

Pt
max

(
κPt
δ
−Wt+1, 0

)
+
(κ
δ
− 1
)
I

(
Wt+1 <

κPt
δ

)
, (20)

and represents the payoff of a short position in a European put option on aggregate wealth (hence-

forth, the stock market index), with a strike price of κPt/δ and maturing in one period, together

with either a long (if κ > δ) or a short (if κ < δ) position in the binary cash-or-nothing put option.

If κ is close to δ, what will be the base case for our empirical investigation, the second term in (20)

can be ignored, so rW,t+1I (Dt+1) can be interpreted as the payoff of a short position in a regular

European put option on the stock market index.

Now, let us consider the more general case of the GDA5 model. The disappointing event Dt+1

may be expressed as

rW,t+1 − a (σW /σX) ∆σ2
W,t+1 < b where a = − (1/ψ)ϕV σ (σX/σW ) and b = ln (κ/δ∗) , (21)

where σW = Std [rW,t+1] and σX = Std
[
∆σ2

W,t+1

]
are the respective unconditional volatilities of

the market return and changes in market volatility. Recalling that ϕV σ < 0, notice this implies
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a > 0 and that both the coefficients a and b depend on investor’s preference parameters. The

GDA5 disappointment indicator I (Dt+1) is again the payoff of a long position in a binary cash-

or-nothing option, but the interpretation of the contingent event now warrants some care. The

term (σW /σX) ∆σ2
W,t+1 may be viewed as the return on a volatility index with same standard

deviation as the market return. In this case, disappointment occurs if the return of a long position

in the market index combined with a short position in the volatility index falls below the constant

threshold b, the short position in the volatility index being a times the long position in the market

index.

In the GDA5 model, the three option factors are two-asset options as their payoffs do not

depend on a single instrument but on both market and volatility indexes. The disappointing event

may occur (and then options mature in-the-money) due to a fall in the market index or an increase

in the volatility index, or both. The factor rW,t+1I (Dt+1) can still be interpretable as the payoff for

shorting a put option on the market index, as it is negative if disappointment occurs due to a fall

in the market index. Similarly, the factor ∆σ2
W,t+1I (Dt+1) is interpretable as the payoff for longing

a call option on the volatility index, as it is positive if disappointment occurs due to an increase

in the volatility index. Likewise, the factor I (Dt+1) can be seen as either a binary put option on

the market index or a binary call option on the volatility index. In particular, if the coefficient

a is equal to one, the long position in the market index is exactly balanced by the short position

in the volatility index in determining disappointment. As a decreases from one towards zero, the

options are more likely to mature in-the-money due to a fall in the market index rather than an

increase in the volatility index. The opposite happens as a increases from one towards infinity. In

our empirical investigation, we motivate our base case values of a and b and provide robustness of

our results to departures from the base case.

It is important to determine what characteristic of investors’ behavior is responsible for a

command of a premium related to a specific factor at the market place. As it is revealed by the

prices of risk in equation (18), a combination of three preference parameters determines whether a

given factor is priced in the cross-section (i.e. has a nonzero price of risk). These parameters are γ

(the parameter governing regular risk aversion), ψ (the elasticity of intertemporal substitution), and
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` (the measure of disappointment aversion). In particular, equation (18) reveals that pW,t 6= 0 if and

only if γ 6= 0, regardless of the disappointment aversion parameter `. This shows that compensation

for the covariance with the market return is exclusively due to investors’ risk aversion. Note also

that γ > 0 implies pW,t > 0. Thus, investors require a premium for a security that has a low return

when the market return is low (σiW,t > 0).

The asset pricing literature generally agrees on investors’ risk aversion parameter γ > 1. As-

suming that γ 6= 1, it follows from equation (18) that pX,t 6= 0 if and only if ψ 6= ∞, regardless of

the disappointment aversion parameter `. Thus, we can argue that compensation for the covari-

ance with changes in market volatility is exclusively due to imperfect intertemporal substitution

of consumption. Investor’s risk aversion γ > 1 and imperfect intertemporal substitution of con-

sumption ψ <∞ together imply that pX,t < 0. Thus, consistent with the existing theoretical and

empirical literature (see for example Ang, Hodrick, Xing and Zhang 2006; Adrian and Rosenberg

2008), investors are willing to pay a premium for a security that tend to pay off when changes in

market volatility are high (σiX,t > 0).

Our next observation is that pD,t 6= 0 if and only if ` 6= 0, regardless of other preference

parameters. This shows that compensation for the covariance with the cash-or-nothing option is

exclusively due to disappointment aversion. This model-implied premium pD,t < 0 when ` > 0

shows that disappointment averse investors are willing to pay a premium for securities that tend to

move upward when the disappointing event occurs (σiD,t > 0). We invite the reader to observe that

Covt

(
Rei,t+1, I (Dt+1)

)
= Et

[
Rei,t+1 | Dt+1

]
− Et

[
Rei,t+1

]
, meaning that σiD,t is also interpretable

as the relative downside potential of the asset. Thus, assets with σiD,t < 0 are undesirable because

they have lower expected payoffs than usual when disappointment sets in.

We also observe that, pWD,t 6= 0 if and only if both γ 6= 0 and ` 6= 0. This shows that neither risk

aversion alone, nor disappointment aversion alone suffices to explain the requirement by investors

to be compensated for the covariance with the put option on the market index. Investor’s risk

aversion γ > 1 and disappointment aversion ` > 0 together imply that pWD,t > 0. Investors require

a premium for a security that tend to move downward when a low market return in a disappointing

state further decreases (σiWD,t > 0). Presuming again that γ > 1, pXD,t 6= 0 if and only if both
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ψ 6= ∞ and ` 6= 0. It turns out that neither imperfect intertemporal substitution of consumption

alone, nor disappointment aversion alone suffices to explain the requirement by investors to be

compensated for the covariance with the call option on the volatility index. Investor’s risk aversion

γ > 1, imperfect intertemporal substitution of consumption ψ < ∞ and disappointment aversion

` > 0 altogether imply pXD,t < 0. Investors are willing to pay a premium for a security that tend

to move upward when large changes in market volatility in a disappointing state further increase

(σiXD,t > 0).

3 Beta pricing and other downside risk measures

The cross-sectional risk-return relation (17) may ultimately be expressed as a multivariate linear

beta pricing model:

Et
[
Rei,t+1

]
= λ>F,tβiF,t (22)

where βiF,t is the vector containing the multivariate regression coefficients of asset excess returns

onto the factors, and λF,t is the vector of factor risk premiums, respectively given by

βiF,t = Σ−1
F,tσiF,t and λF,t = ΣF,tpF,t. (23)

The vector σiF,t contains the covariances of the asset excess returns with the priced factors, the

vector pF,t contains the associated factor risk prices, and ΣF,t is the factor covariance matrix. It is

important to note that if the covariance between the market return and changes in market volatility

is negative (Covt

(
rW,t+1,∆σ

2
W,t+1

)
< 0), consistent with the leverage effect as postulated by Black

(1976) and documented by Christie (1982) and others, then the signs of the elements of λF,t are the

same as of the corresponding elements of pF,t. This beta representation nests both the three-factor

model GDA3 (ψ =∞) and the five-factor model GDA5 (ψ 6=∞).

In this section, we argue and show that exposures of asset payoffs to the three option factors

provide a rational interpretation of downside risks as studied in the literature. To achieve this, we

show how our multivariate betas from equation (23) are related to a number of different measures
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put forward in previous empirical research to capture the market downside risk of an asset.

One of the most popular measures of the market downside risk is the market downside beta

empirically examined by Ang, Chen and Xing (2006), and defined as

βDMi,t ≡
Covt

(
Rei,t+1, rW,t+1 | Dt+1

)
V art [rW,t+1 | Dt+1]

. (24)

Post et al. (2010) advocate to use the semi-variance (SV) beta to measure the market downside

risk. They study how realized market downside risk measures are related to future returns, and

argue that the SV beta captures downside market risk better than the market downside beta. The

SV beta emerges from the lower partial moment framework of Bawa and Lindenberg (1977), and

is defined by

βSVi,t ≡
Et

[
Rei,t+1rW,t+1 | Dt+1

]
Et

[
r2
W,t+1 | Dt+1

] . (25)

Acharya et al. (2010) and Brownlees and Engle (2011) use the Marginal Expected Shortfall

(MES) to measure the systemic risk of financial institutions during a financial crisis. They show

that the MES, together with the leverage of the institution, are able to predict emerging risks

during a financial crisis. We believe the pricing of this systemic risk measure in the cross-section

of stock returns is an important topic, and then it is worth showing how the MES expresses in

terms of exposures of financial institutions to theoretically motivated factors that are priced at the

market place. The MES of an asset is defined by

MESi,t ≡ Et
[
−Rei,t+1 | Dt+1

]
. (26)

In case of MES, we also emphasize that, to be considered as a measure for systemic risk, that

is a more severe and unfrequent downside risk (for example 5% worst days for market return or

volatility), the GDA preference parameter κ that modulates both the amplitude and the frequency

of disappointment must be sufficiently lower than one.

When used in previous literature, the above measures define the downside event Dt+1 as the

market return falling below a certain threshold. This case corresponds to our GDA3 model. Our
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discussion in Section 2, on the other hand, suggests that volatility downside risks may also be

priced in the cross-section of stock returns, that it should be distinguished from market downside

risk, and that the tradeoff between the two sorts of downside risk should also be emphasised. To

this end, we also introduce a measure of volatility downside risk that is analogue to the market

downside beta:

βDVi,t ≡
Covt

(
Rei,t+1,∆σ

2
W,t+1 | Dt+1

)
V art

[
∆σ2

W,t+1 | Dt+1

] . (27)

We show3 that each of these four measures can be written in the following form:

aW,tβiW,t + aWD,tβiWD,t + aD,tβiD,t + aX,tβiX,t + aXD,tβiXD,t + aR,tEt
[
Rei,t+1

]
, (28)

i.e. as a linear combination of our multivariate betas and the mean return of the asset. The af,t

coefficients for each measure are presented in Table 1. Note, that these coefficients arise when the

GDA5 model is used. If we start from the GDA3 model, which more closely corresponds to the

previous literature on market downside risk, the measures4 can be written as

aW,tβiW,t + aWD,tβiWD,t + aD,tβiD,t + aR,tEt
[
Rei,t+1

]
, (29)

where the af,t coefficients are exactly the ones reported in Table 1. There are a couple of observa-

tions we would like to make regarding theses measures of downside risk.

First, observe that the SV beta and the MES not only vary because of multivariate betas on

GDA factors but also because of expected returns of the asset. For this reason, we argue that they

should not be employed when empirically analyzing a contemporaneous relationship with expected

returns. The empirical analysis of whether they predict future expected returns (e.g. see Post et al.

2010 for the SV beta), may also be puzzled by a momentum or reversal effect already incorporated

in the measure. Given this observation, in empirical studies on downside risks and expected returns

that examine the SV beta or the MES, we advocate using the relative SV beta and the relative

3To save space, we refer the reader to the external appendix for complete derivations of these relations.
4Note, that the volatility downside beta, βDV

i,t is theoretically valid only under the GDA5 model.
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MES which we define by

βRSVi,t ≡ βSVi,t − aSVR,tEt
[
Rei,t+1

]
=
Et

[
Rei,t+1rW,t+1 | Dt+1

]
Et

[
r2
W,t+1 | Dt+1

] −
Et [rW,t+1 | Dt+1]

Et

[
r2
W,t+1 | Dt+1

]Et [Rei,t+1

]
RMESi,t ≡MESi,t − aMES

R,t Et
[
Rei,t+1

]
= Et

[
−Rei,t+1 | Dt+1

]
− Et

[
−Rei,t+1

]
.

(30)

We invite the reader to observe that the RMES of an asset is simply equivalent to the opposite of

its relative downside potential as introduced in the previous section.

Second, note that the coefficients in Table 1 only vary through time but do not vary in the

cross-section. So, variations of βDMi,t , βDVi,t , βRSVi,t and RMESi,t across stocks result from varia-

tions in GDA factor risk exposures. Ultimately this means that, investigating the cross-sectional

pricing of all existing downside risk measures reduces to investigating whether GDA risk factors

are priced in the cross-section of stock returns. To this end, the GDA model provides a unified

theoretical framework that can explain existing empirical findings on the pricing of these downside

risk measures, as themselves are all linear combinations of the same GDA risk factors. An extensive

empirical analysis of the cross-sectional risk-return relation (17) and the multivariate beta pricing

model (22) will by carried out in subsequent sections, with the novelty of emphasizing on the pricing

of volatility downside risk and the trade-off between market and volatility downside risks, an area

the cross-sectional asset pricing literature has been silent in.

Finally, observe from Table 1 that aW,t, aWD,t and aD,t are positive while aX,t and aXD,t are

negative. This shows that, both the relative SV beta and the relative MES increase with the betas

on the market return, the put option and the cash-or-nothing option, and decrease with the betas

on changes in market volatility and the call option. Also note that while exposure to the cash-or-

nothing option influences the relative SV beta and the relative MES, it plays no role in determining

the market downside beta and the volatility downside beta. An empirical investigation of how

the ai,t coefficients for the different measures vary through time and how they weight the different

components of downside risks through the business cycle is left out for future research.
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4 Empirical assessment

The cross-sectional risk-return relation (17) and its multivariate beta representation (22) are the

basis for our empirical assessment. We empirically investigate both the GDA5 and the GDA3 mod-

els. Notice that the cross-sectional GDA3 model is not nested in the cross-sectional GDA5 model.

As shown previously, the disappointing event implied by these two models are different and we must

define in each case a disappointment region that is consistent with its own theoretical implication.

We recall that, in general, the disappointing event is given by rW,t+1 − a (σW /σX) ∆σ2
W,t+1 < b

where a > 0 for the GDA5 model and a = 0 for the GDA3 model. Our base case specification uses

b = −0.005 for both models and a = 3 for the GDA5 model5. We later investigate in Section 4.3.2

how sensitive are our main results to alternative values of the coefficients a and b.

4.1 Data

Following common practice in the literature, we test our model using all common stocks (CRSP

share codes 10 and 11) traded on the NYSE, AMEX and NASDAQ markets. The source of the

data is the Center for Research in Security Prices (CRSP) and the analysis covers the period

between July, 1963 and December, 2010. The market return is the value-weighted average return

on all NYSE, AMEX, and NASDAQ stocks from CRSP, while the risk free rate is the one-month

US Treasury bill rate from Ibbotson Associates. Both time series are obtained from Kenneth R.

French’s data library6.

Testing the GDA5 model necessitates a measure for market volatility. Several approaches have

been used for measuring market volatility in cross-sectional asset pricing studies. For example,

Ang, Hodrick, Xing and Zhang (2006) use the option-implied volatility (VIX) index, Adrian and

Rosenberg (2008) estimate market volatility from a GARCH model, while Bandi et al. (2006)

use realized volatility computed from high-frequency index returns. We chose to use the GARCH

model-based estimate of market volatility in our main specification. The most important advantage

5These values of a and b match those implied by a calibrated Markov-switching endowment economy,
similar to Bonomo et al. (2011), that reproduces the aggregate stock market behavior. Further details can
be found in the external appendix.

6http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html
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of this approach is to use the entire sample period7. We obtain our measure of market volatility

by fitting the Exponential GARCH model of Nelson (1991) to the daily market return series using

the whole sample period. The exact model specification and the coefficient estimates are presented

in Table 2. In Section 4.3.2, we examine the robustness of our results to alternative measures of

market volatility.

When presenting our results, we compare the performance of the GDA model specifications to

that of the familiar CAPM and the model of Carhart (1997), henceforth four-factor model. Daily

return series on these factors, as well as on portfolios used as test assets in Section 4.3.4, are also

collected from the Kenneth R. French’s data library.

4.2 Portfolio sorts

We sort individual stocks based on the covariances between their excess returns and the cross-

sectional factors from equation (17). Then we form five portfolios based on quintiles of each

factor exposures, and examine whether average excess returns of these portfolios display monotonic

patterns that are consistent with economic intuition as described by the signs of the prices of risk

implied by theory. Our methodology closely follows Ang, Chen and Xing (2006). For every month

t ≥ 12 throughout the whole sample period, we calculate conditional realized covariances from

equation (17) using twelve-month of daily data from month t− 11 to month t. For each stock, we

also calculate the conditional average monthly excess return over the same twelve-month period.

Risk and reward are thus contemporaneously measured. Stocks are then sorted into five quintile

based on their realized covariances, and the average excess returns on these quintile portfolios are

calculated. Finally, we take the time-series average of the portfolio excess returns. As pointed out

by Ang, Chen and Xing (2006) this use of overlapping information is more efficient, but induces

moving average effects, which can be accounted for by reporting robust t-statistics that are adjusted

using 12 Newey and West (1987) lags.

Table 3 presents annualized average excess returns of portfolios created by sorting stocks based

on their realized covariances with the factors. Note that this is numerically equivalent to sorting

7We can obtain daily VIX and realized volatility data starting from 1986 only.
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on univariate factor betas. We focus on equal-weighted portfolios (Panel A) when analyzing the

results, but the patterns are similar if considering value-weighted portfolios (Panel B). The first

column shows the results for sorting on the CAPM beta. We find a monotonically increasing

pattern between realized average returns and realized beta. Quintile Low (High) of σiW has an

average excess return of 5.10% (17.99%) per annum, and the spread in average excess returns

between quintile portfolios Low and High is 12.89% per annum. The pattern and the magnitude

of the premia are in line with the existing literature (see for example Ang, Chen and Xing 2006;

Ruenzi and Weigert 2011). In the second column, stocks are sorted into portfolios based on their

univariate volatility beta, σiX . In line with previous empirical findings (see for example Adrian and

Rosenberg 2008; Ang, Hodrick, Xing and Zhang 2006), we find that stocks with higher covariance

with changes in market volatility pay lower returns on average. Stocks in the quintile with the

lowest (highest) σiX earn 15.82% (6.19%) per annum in excess of the risk-free rate. The average

difference between quintile portfolios Low and High is -9.63% per annum.

The third and the fourth columns of Table 3 correspond to the results for sorting on covariances

with two payoffs on regular options on the market index as implied by the GDA3 model. The

options mature in-the-money if rW,t+1 < −0.005. Column 3 shows the results for sorting on the

covariance with a long binary cash-or-nothing put option. We find that average excess returns are

monotonically decreasing with that covariance. Stocks in the quintile with the lowest (highest) σiD

earn 19.27% (4.60%) per annum in excess of the risk-free rate. The average difference between

quintile portfolios Low and High is -14.67% per annum, which is statistically significant at the 1%

level. Column 4 shows a monotonically increasing pattern between realized average returns and

realized covariance with a short put option on the market index, σiWD. Quintile Low (High) has

an average excess return of 4.35% (20.01%) per annum, and the spread in average excess returns

between quintile portfolios Low and High is 15.66% per annum, which is statistically significant at

the 1% level. These results are consistent with investors requiring premiums to invest in stocks

with low downside potential and in stocks that tend to have low payoffs in a down and further

declining market, such as the GDA representative investor described in Section 2.1.

The last three columns of Table 3 correspond to the results for sorting on covariances with
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three payoffs on two-asset options on market and volatility indexes as implied by the GDA5 model.

The options now mature in-the-money if rW,t+1 − 3 (σW /σX) ∆σ2
W,t+1 < −0.005. This allows for

volatility downside risk pricing, the focus of this paper, in addition to market downside risk, as

a rise in the volatility index may also trigger disappointment. The results for sorting on σiD and

σiWD are shown in columns 5 and 6, and are very similar to those obtained in columns 3 and 4,

although the disappointing event is now more likely to occur due to a rising market volatility rather

than a falling market return, as discussed in Section 2.4. This in part points to the fact that our

results are robust to alternative definitions of the disappointing event. The last column shows that

average excess returns are monotonically decreasing with realized covariance with a long call on

the volatility index. Stocks in the quintile with the lowest (highest) σiXD earn 16.47% (5.63%) per

annum in excess of the risk-free rate. The average difference between quintile portfolios Low and

High is -10.84% per annum. This latter result adds to the existing literature. It is also consistent

with investors requiring a premium to invest in stocks that tend to have low payoffs in an up and

further increasing volatility state, such as the GDA representative investor described in Section 2.1.

Finally, all five risk measures of the GDA5 model generate monotonic patterns in the average

returns of beta-sorted portfolios with statistically significant differences between the lowest and

the highest quintile portfolios. Moreover, these patterns are in line with the signs of the prices of

risk suggested by theory, as shown in equation (18). However, observe that these univariate betas

may be highly correlated, making it difficult to disentangle the marginal effect of the different

factors. The upper left corner of Table 4 shows the average cross-sectional correlation between the

univariate exposures over our sample period. Interestingly, market (downside) risk is not correlated

to volatility (downside) risk. The correlation between σiW (σiWD) and σiX (σiXD) is -0.06 (-0.01),

pointing to the fact that volatility downside risk is a separate component of overall risk, that

warrants the same special treatment that has been given to market downside risk throughout the

literature.

The upper left corner of Table 4 also evidence a couple of high correlation values between

exposures to option payoffs and exposures to their underlying instruments. For example, there

is a 0.92 correlation between σiX and σiXD. The correlation of 0.81 between σiW and σiWD is
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in line with Ang, Chen and Xing (2006) and Post et al. (2010) who find that the regular CAPM

beta and their univariate measures for market downside risk are highly correlated. One possible

solution to this problem is to calculate factor exposures from a single multivariate regression implied

by our multifactor model, instead of calculating them from univariate regressions. We follow the

multivariate approach for the remaining of the paper.

4.3 Fama-MacBeth regressions

We now focus on the empirical evaluation of equation (22). Using the two-pass cross-sectional

regression method of Fama and MacBeth (1973, henceforth FM), we estimate the factor risk premia

and examine if option-like payoffs derived from the theoretical model are important in explaining

the cross-section of stock returns, and if they command a significant and fairly large portion of the

total asset risk premium. To compute conditional multivariate betas, we follow Lewellen and Nagel

(2006) and instead of trying to determine the appropriate set of conditioning variables, we use

short-window regressions to calculate the factor loadings. For every month t ≥ 12, we use twelve

months of daily data from month t− 11 to month t to run the following time-series regression for

each asset i in the first stage of the FM procedure:

Rei,τ = αβi,t+βiW,trW,τ+βiWD,trW,τI (Dτ )+βiD,tI (Dτ )+βiX,t∆σ
2
W,τ+βiXD,t∆σ

2
W,τI (Dτ )+εiτ . (31)

Again, this approach induces overlapping information when calculating the conditional factor load-

ings and we account for this by reporting Newey and West (1987) adjusted standard errors in all

our tests.

The lower right corner of Table 4 shows that the average cross-sectional correlations between the

multivariate betas over our sample period are considerably lower than those between the univariate

betas used for portfolio sorts in the previous section. So using these multivariate betas in the cross-

sectional regressions of the FM procedure reduces the problem of multicollinearity. The second

stage of the FM procedure corresponds to estimating the cross-sectional regressions

µi,t = αλt + βiW,tλW,t + βiWD,tλWD,t + βiD,tλD,t + βiX,tλX,t + βiXD,tλXD,t + ηit, (32)
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where the conditional average excess returns for each month t is the average monthly excess return

from month t − 11 to t, so that risk and reward are contemporaneously measured. Factor risk

premia obtain by averaging the lambdas over the sample period (Ê [λF,t]).

Ang, Hodrick, Xing and Zhang (2006) argue that in order to have a factor risk explanation,

there should be contemporaneous patterns between factor loadings and average returns. Several

cross-sectional asset pricing studies focus on this contemporaneous relationship (e.g. Ang, Chen

and Xing (2006), Cremers et al. (2011), Fama and MacBeth (1973), Lewellen and Nagel (2006) and

Ruenzi and Weigert (2011), among others). We follow this common approach to derive our main

results and, in Section 4.3.3 we also report results from cross-sectional regressions of future average

excess returns on current betas.

4.3.1 Individual stocks and contemporaneous returns

Following Black et al. (1972), as a standard method for handling the errors-in-variable problem

induced by the two-pass cross-sectional regression method, the majority of cross-sectional asset

pricing studies use portfolios as test assets. However, Ang et al. (2010) have recently argued that

creating portfolios destroys important information and leads to larger standard errors. They show

that using individual stocks permits more efficient tests of whether factors are priced, and there

should be no reason to create portfolios. Cremers et al. (2011), Lewellen (2011) and Ruenzi and

Weigert (2011) are recent examples focusing on individual stocks as base assets in FM regressions.

Our main results are based on individual stocks from the CRSP universe as base assets for the FM

regressions. Nevertheless, we report results with portfolios as base assets in Section 4.3.4 where we

decompose asset premia and measure the parts that can be attributed to different factors.

Results from analyzing the contemporaneous relationship between factor loadings and average

returns using individual stocks as base assets are presented in Tables 5 and 6. Theory implies no

constant in the cross-sectional regressions. However, since there is no consensus in the empirical

literature whether to include a constant or not, we report results both with constant in Table 5,

and without in Table 6. The top panels of the tables show estimates of factor risk premia for the

listed models.
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The bottom panels report, for every factor f , the annualized spread Ê
[(
β75thf,t − β25thf,t

)
λf,t
]

between two hypothetical portfolios with different betas on the factor f , everything else being equal.

We refer to this number as the interquartile spread (IQS) of the factor. The first portfolio’s beta

is the 75th percentile while the second’s is the 25th percentile of the cross-sectional distribution of

individual stock betas on factor f . The IQS thus represents a premium for shorting low beta stocks

and longing high beta stocks. It is worth noting that it would actually be hard to create portfolios

that differ only in one of the multivariate betas, everything else being equal. So we look at the IQS

only as an indicative number to help interpret the economic magnitude of the risk premia reported

in the FM regressions. In Section 4.3.5 we quantify the premium attributable to each factor on

actual portfolios.

Focusing on Table 5, the first column corresponds to the basic CAPM, with a significant positive

market price of risk, together with a significant constant term at the 10% level, consistent with

similar results in Ang, Chen and Xing (2006). The second model in column 2 includes both the

market return and changes in market volatility. Both risk premia are statistically significant and

the signs are consistent with the results of Ang, Hodrick, Xing and Zhang (2006) and Adrian and

Rosenberg (2008). Column 3 presents the result for the GDA3 model where investors only dislike

downside risks in falling market returns. All factor risk premia are significantly estimated at the

1% level, and the estimated constant is no longer significant. The signs of the estimates are in line

with the predictions of the theoretical model as discussed in Section 2.4. In economic terms the

IQS of the binary cash-or-nothing option on the market index is -6.59%, and is comparable to the

IQS of the market return of 6.19%, while both are smaller than the IQS of the put option on the

market return of 9.5%. These results confirm the portfolio sorts of Table 3.

Let us now examine the results from the GDA5 model where investors dislike downside risks

in both falling market returns and rising market volatility, presented in column 4. All factor risk

premia are significantly estimated, while the estimated constant is not significant and is considerably

lower than that of the CAPM and GDA3 models. Regarding the economic magnitudes of the

estimated factor risk premia, IQS of the binary cash-or-nothing and the put options on the market

index have decreased compared to the GDA3 model. This shows that not being indifferent to
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volatility downside risk reduces the marginal effect of market downside risk. However, IQS of these

two factors are still non-negligible, -4.59% and 4.63% respectively. Changes in market volatility

have an IQS of -5.84%, and the call option on the volatility index has an IQS of -7.35%. The large

IQS of the call option on the volatility index relative to the put option on the market index may

be due to the fact that our base case disappointing event favors rising market volatility relative

to falling market returns in triggering disappointment. We emphasize that this empirical analysis

of volatility downside risk is novel to the cross-sectional asset pricing literature. Regarding overall

fit, the GDA5 model provides further improvement over the GDA3 model, as measured by the

cross-sectional R2, from 5.08% to 6.43%.

The remaining columns of Table 5 shows estimation results of cross-sectional asset pricing

models featuring factor risks that are not motivated by the theory of disappointment aversion as

discussed in this article, or by any theory at all. These risks are the coskewness risk studied by

Harvey and Siddique (2000), and betas on the size, value and momentum factors examined by

Carhart (1997). In columns 5 and 6 we estimate the coskewness model and control for coskewness

risk in the GDA5 model. We measure coskewness risk as the coefficient on the squared market

return from the bivariate regression of the asset’s excess return on the market return and the

squared market return. We denote the coskewness risk premium by λW 2 in cross-sectional models.

Column 5 shows that coskewness has a statistically significant negative risk premium, confirming

the findings of Harvey and Siddique (2000).

When coskewness is added to the GDA5 model in column 6, the statistical and economic

magnitudes and significance of GDA5 factor risk premia barely change. The largest change actually

occurs for the coskewness risk premium estimate compared to the model in column 5; it decreases

by half in magnitude. Also, adding coskewness to the GDA5 model does not improve the fit of

the model considerably, as measured by the cross-sectional R2, from 6.43% to 6.98%. The IQS of

coskewness is significantly smaller that of any of the GDA5 factor risk, and falls from -3.64% to

-2.43% when controlling for the GDA5 factors. All in all, coskewness does not seem to drive out

any of the GDA5 factors, if anything, it is the other way around.

Column 7 shows estimation results for the four-factor model. The size and momentum factors
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are positive and significant. The IQS of the momentum factor is particularly big. The value

premium is insignificant and has a negative sign. While this result seems to be puzzling at first,

Ang et al. (2010) points out that when the estimation uses individual stocks, the value premium is

negative. They argue that the book-to-market effect is a characteristic effect rather than a reward

for bearing the HML factor loading risk. If the book-to-market ratio is included in cross-sectional

regressions instead of the HML factor, the coefficient on the book-to-market ratio is positive and

significant. They also argue that when book-to-market sorted portfolios are used as base assets

in the FM regressions, the HML factor loadings are induced to have a positive coefficient through

forcing the portfolio breakpoints to be based on book-to-market characteristics. This is confirmed

in our results of Section 4.3.4.

The last column of Table 5 presents the specification where both the GDA5 factor betas and the

Carhart (1997) factor betas are included in the cross-sectional model. The important observation

here is that the sign, and significance of the GDA5 factor risk premia estimates do not change

considerably compared to column 4. The statistical magnitudes of the GDA5 factor risk premia

decrease slightly, but their economic magnitudes are still important. Moreover, the GDA5 factor

betas provide improvement in overall fit when added to the Carhart (1997) cross-sectional model,

as measured by the cross-sectional R2, from 9.85% to 11.14%. The IQS of the momentum factor

falls when the GDA5 factors are controlled for (from 9.17% to 7.57%), while the IQS of the size

factor (3.31%) is comparable to that of the binary cash-or-nothing and the put option on the market

index (-3.12% and 2.90%), but smaller that of the call option on the volatility index (-4.62%).

Table 6 repeats the same analysis of Table 5 restricting the constant term in the cross-sectional

regressions to zero. The conclusions that can be drawn from the table are virtually the same as those

drawn from Table 5. While the economic magnitudes are somewhat bigger than those in previous

the table, the patterns are very similar. Also, the statistical significance of the volatility-related

factor risk premia in the GDA5 model (λX and λXD) is weaker than in Table 5, but their economic

magnitudes remain important and unaffected. This is probably due to the high cross-sectional

correlation of −0.74 between βiX and βiXD as shown in Table 4. As we have already pointed it

out, this high correlation makes it hard to disentangle the effect of the two risk measures.
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To conclude this subsection, FM regressions analyzing the contemporaneous relationship be-

tween expected returns and factor exposures show that options on market and volatility indexes as

implied by generalized disappointment aversion preferences are priced in the cross-section of stock

returns. The associated factor risk premia are both statistically and economically significant, and

their signs are consistent with the theoretical predictions. In the following subsection we assess the

robustness of these results.

4.3.2 Robustness checks

Alternative disappointment regions

We recall that the disappointment region implied by the theoretical setup as discussed in Section

2.4 is given by rW,t+1 − a (σW /σX) ∆σ2
W,t+1 < b where a > 0 for the GDA5 model and a = 0 for

the GDA3 model. Our main empirical results in the previous section assume b = −0.005 for both

models and a = 3 for the GDA5 model. In this section we focus on the GDA5 model and examine

the changes to our results as we vary the coefficients a and b. Results are reported in Table 7. Our

baseline specification (a = 3 and b = −0.005) is reported in column 6 for comparisons. We vary

the coefficient a across the values 0, 1, 3 and 5, and the cutoff point b across the values 0, -0.005

and -0.007 so as to maintain a reasonable frequency of the disappointing event.

The top panel of the table shows that by decreasing the threshold b, anything else equal, the

frequency of disappointment decreases. For example, the frequency of disappointment decreases

from 45.67% to 21.36% as b falls from 0 to -0.005, keeping a = 0. The numbers are respectively

from 41.36% to 24.93%, with a = 1, and from 35.76% to 26.67%, with a = 3. We also observed

that with b = 0, increasing the coefficient a reduces the frequency of disappointment, while it is the

contrary with a sufficiently negative b. The middle panel of the table shows that estimates of the

factor risk premia are remarkably robust across alternative disappointment regions; there is barely

any change in them. Also, the overall fit of the model, as measured by the cross-sectional R2, is

very similar across the different disappointing regions. Interestingly, what changes is the economic

magnitude of the factors, then attributable to changes in beta estimates from the first stage FM

regressions.
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When a = 0, thus rising volatility cannot trigger disappointment, and when b = 0 as in column

1, the market return has the largest IQS of 8.02%, followed by the put option on the market index

with an IQS of 7.24%, while the binary cash-or-nothing option has the smallest IQS, -2.82%. As b

decreases to −0.005 in column 2, focusing on more severe disappointing outcomes, everything else

equal, the IQS of the binary cash-or-nothing option jumps to -6.74%, that of the put option on the

market index increases to 9.76%, while that of the volatility-based factors are almost unaffected.

To the contrary, positive values of a rises the IQS of the volatility factors and decreases that of the

market-based factors relative to a = 0. For example, comparing column 1 and 5, the IQS of changes

in market volatility rises from -3.86% to -6.40%, while that of the call option on the volatility index

rises from -4.36% to -7.68%. At the same time, the IQS of the market return falls from 8.02% to

6.68%, while that of the put option on the market index falls from 7.24% to 4.86%, corroborating

the tradeoff between market and volatility downside risks in this model.

Finally, when the market return and changes in market volatility are equally likely to trigger

disappointment, meaning that a = 1, columns 3 and 4 show that the economic magnitudes of

the put option on the market index and the call option on the volatility index are comparable.

Their respective IQS are 6.26% and -6.56% respectively in column 3 when b = 0, and 6.69% and

-6.33% respectively in colum 4 when b = −0.005. Ultimately, alternative disappointing events

simply rearrange the economic significance of the GDA factor risks, without affecting the factor

risk premia which remain statistically significant and carry the signs predicted theory.

Alternative measures of market volatility

In this subsection we explore how the GDA5 model results change if different measures of market

volatility are considered. Our main results of Section 4.3.1 uses a daily market volatility estimated

by fitting an Exponential GARCH model to the daily market return series. Alternative approaches

include using the option-implied volatility (VIX) index, calculating daily realized variance from

intra-daily market returns, or fitting a different GARCH model. For a detailed description of the

estimation of these alternative measures, we refer the reader to Appendix A. The corresponding

results are presented in Table 8.
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Panel A presents the results for the whole sample period, from January 1963. Since the VIX

and the intra-daily market return data are available from 1986, only results for alternative GARCH

models are presented. The results are very robust, with only minor changes across the different

GARCH specifications. Accounting for leverage effect in GARCH modelling increases the cross-

sectional fit of the GDA5 model, and improves the IQS of the call option on the volatility index.

The standard GARCH model has an R2 (IQS) of 5.65% (-5.36%) while that of the EGARCH and

the GJR-GARCH are 6.43% (-7.35%) and 6.32% (-7.64%) respectively.

Panel B presents the results for the subsample starting from 1986, when data are available

for all the volatility measures. The R2, the signs and the statistical significance of the factor risk

premia estimates are very similar across all volatility specifications. The statistical significance of

the volatility-related factors is lost for this shorter sample period, but their economic magnitudes

are still important. As we have already discussed, this may probably be due to the high correlation

between βiX and βiXD. Also, observed that, accounting for leverage effect in GARCH modelling

improves the IQS of the call option on the volatility index with respect to nonparametric volatility

measures. The VIX and the realized volatility have IQS of -4.58% and -4.54%, while that of the

EGARCH and the GJR-GARCH are -7.18% and -6.82% respectively.

4.3.3 Individual stocks and future returns

In this subsection, we check if current realized multivariate betas on the GDA factors predict

high future returns over the next months, similar to the contemporaneous relationship between

multivariate betas and realized average returns from the previous subsection. Lewellen (2011) is a

recent example to analyze predictive FM regressions. We carry out the same exercise as in Section

4.3.1, measuring the realized multivariate betas from equation (31), but now the left-hand side of

the cross-sectional regression (32) is (1/h)
h∑
j=1

Rei,t+j , the average monthly excess returns over the

next months. We consider three different predictability horizons: one month (h = 1), three months

(h = 3) and six months (h = 6).

The cross-sectional predictive regression results are shown in Table 9. The top panel displays

results for the GDA3 model, while the bottom panel displays results for the GDA5 model. The
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conclusions are very similar to those obtained by analyzing the contemporaneous relationship be-

tween betas and returns in Section 4.3.1. GDA factor risks predict future returns at conventional

levels of significance. Positive betas on the market return and the short put on the market index

predict higher future returns, while it is the contrary for positive betas on the long binary cash-

or-nothing option, changes in market volatility and the long call on the volatility index, everything

else equal. The signs of the predictability coefficients, the GDA factor risk premia, are in line with

the theoretical implications of the model, and controlling for coskewness, and for size, value and

momentum factor betas does not affect these predictability patterns. In particular, coskewness does

not predict future returns beyond the predictability of the GDA multivariate betas. Also, notice

that an increase in the HML factor beta significantly predicts higher future returns, although the

contemporaneous relation between expected returns and the HML factor beta is insignificant as

shown in Section 4.3.1.

4.3.4 Portfolios as test assets

Although Ang et al. (2010) argue that it is more efficient to use individual stocks in cross-sectional

asset pricing tests than portfolios, most of the literature uses portfolios as base assets. Therefore,

we repeat the analysis of Section 4.3.1, to examine the empirical performance of our GDA models

using portfolios as test assets, with otherwise unchanged methodology.

We use value-weighted return series of five different sets of portfolios: (i) 25 (5×5) portfolios

formed on size and book-to-market, (ii) 25 (5×5) portfolios formed on size and momentum, (iii)

25 (5×5) portfolios formed on size and long-term reversal, (iv) 30 industry portfolios, and (v) 30

portfolios consisting of 10 size, 10 book-to-market, 10 momentum. Table 10 shows the results of

FM regressions for four different cross-sectional models (CAPM, four-factor, GDA3, and GDA5).

Consistent with the results on individual stocks, the signs of the GDA factor risk premia estimates

validate the theoretical predictions, and this is true for all sets of test portfolios. These estimates

are statistically significant at conventional levels across the different sets of portfolios, except for the

industry portfolios where the premium of the long call on the volatility index appears insignificant.

The fit of the models, as measured by the sum of squared pricing errors (labelled with “SSE”)
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shows that the GDA3 model is a considerable improvement compared to the standard CAPM,

while the GDA5 model further improves upon the GDA3. The best fit (lowest SSE) is provided

by the four-factor model for all sets of test portfolios, but the fit of the GDA5 model is quite

comparable. Overall, our results on the pricing of downside risks through option exposures and

especially of volatility downside risks are robust to alternative test assets.

Figure 1 shows scatter plots of actual versus predicted returns for the different models on 10

size (S1 to S10), 10 book-to-market (B1 to B10), 10 momentum (M1 to M10) portfolios. It gives

a visual impression of our findings: fitted returns of the GDA models line up along the 45-degree

line in a manner that is remarkably similar to the four-factor model, and the contrast with the

CAPM is stark. We invite the reader to bear in mind that the GDA factors are motivated by

dynamic asset pricing and behavioral decision theories, while a theoretical approach to size, value

and momentum factors is rather nonexistent. Intuitively, exposures to options on the market and

volatility indexes improve the fit of the CAPM and a model with market return and changes in

market volatility, because some stocks are more highly correlated with these factors in bad times,

when disappointment sets in and options expire in-the-money, than they are in good times, when

the market is up and the level of volatility is satisfying.

4.3.5 Decomposing portfolio risk premia

We already assess the economic importance of the GDA factors in section 4.3.1 by comparing the

premium difference, termed IQS, in two hypothetical portfolios that differ in their exposures to

one of the factors, everything else being equal. However, these hypothetical portfolios are hard

to create in real life. In the current subsection we decompose the actual expected excess returns

of the 10 size, 10 book-to-market, 10 momentum portfolios into parts attributable to the different

factors. For every asset i and factor f , we compute the annualized Ê [βif,tλf,t] where the βif,t and

the λf,t are estimated from the first and second stages of the FM procedure, respectively. This

exercise can be carried out for any set of portfolios. We chose the 10 size, 10 book-to-market, 10

momentum portfolios because this set provides the most illustrative example. Figure 2 shows the

decomposition of all portfolio premia for three different models (CAPM, four-factor and GDA5),
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while Table 11 quantifies the results for the top and bottom portfolios in each category.

Focusing first on the 10 size portfolios, observe from the table that actual average excess returns

decrease from small firms (8.01%) to big firms (4.07%), a positive small-minus-big spread of 3.9%

that illustrates the well-documented size premium (see for example Fama and French 1992). The

failure of the standard CAPM in pricing size portfolio is apparent. It predicts an increase in average

excess returns from small (4.23%) to big (6.66%) firms, a negative spread of -2.44% totally off the

actual value. The four-factor model provides a much improved fit compared to the standard CAPM.

The predicted average excess returns show the same patterns as the actual: they decrease from

6.67% for small to 4.59% for big firms, a spread of 2.09%, mostly dominated, and not surprisingly,

by its size factor component, accounting for 1.75% out of the 2.09% spread. The GDA3 model

also predicts that average excess returns decrease from small (7.02%) to big firms (4.99%) firms, a

spread of 2.03%, comparable to that of the four-factor model, and mostly driven by its put option

component (6.58%). Notice that, the GDA5 model provides the best fit for the size portfolios, with

a predicted small-minus-big difference of 2.67%, dominated by the put and call option components,

2.81% and 4.04% respectively. These option components of the small-minus-big spread as predicted

by the GDA models are large enough to compensate for the negative spreads on other factors.

In the case of the 10 book-to-market portfolios, realized average excess returns increase from

growth stocks (3.75%) to value stocks (10.22%), a positive value premium of 6.50% as documented

in the cross-sectional asset pricing literature (see for example Fama and French 1992). Figure 2

shows that the excess returns predicted by the CAPM are rather flat or slightly concave across these

portfolios, generating a negative value premium of -0.50%, and corroborating the inconsistency of

the CAPM with this empirical regularity of the data. The four-factor model provides the best

prediction of the value premium (5.59%), less than 1% off the actual value. A large part of this

spread, 3.48% out of 5.59%, represents the value factor component. The GDA3 and GDA5 models

are not as successful as the four-factor model, but they provide much improvement over the CAPM.

The GDA5 predicts a 3.67% value premium, mostly dominated by its put and call components,

2.27% and 2.10%, respectively.

The last set of portfolios to look are the 10 momentum. The actual excess returns increase
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from looser (-2.02%) to winner (12.42) portfolios, a positive winner-minus-looser spread of 14.5%,

corroborating the well-documented momentum premium (see for example Jegadeesh and Titman

1993). The CAPM predicts momentum premium of only 4.08%, more than three times smaller

than the actual premium. The four-factor model again performs the best in this dimension, with

a predicted spread of 10.51%, almost exclusively due its momentum factor component, accounting

for 9.04% out of the 10.51% spread. The GDA3 model predicts a momentum premium of 7.39%,

half the actual value, while the GDA5 predicts a momentum premium of 9.05%, close to the

value predicted by the four-factor model. The predicted momentum premium by the GDA5 model

is equally distributed between its components from the three option factors (4.39%) and their

underlying instruments (4.66%).

Ultimately, both the GDA3 and the GDA5 models provide considerable improvement on the

standard CAPM, while the performance of the GDA5 model is comparable to that of the four-factor

model. However, one important observation is at stake. The improved fit of the four-factor model

on size portfolios comes mostly from the size (SMB) factor, its improved fit on the book-to-market

portfolios comes mostly from the value (HML) factor, and the improved fit on the momentum

portfolios is almost exclusively due to the momentum (WML) factor. This observation shows how

each factor is tailor-made to explain its respective anomaly. For the GDA5 model, on the other

hand, the improved fit for all three sets of portfolios mainly comes from contributions from two

sources: the premium associated with the short put option on the market index and the premium

associated with the long call option on changes in market volatility. Both factors arise due to

investors’ disappointment aversion and time-varying macroeconomic uncertainty.

5 Conclusion and Future Work

This paper provides an empirical analysis of downside risks in asset prices. The approach is consis-

tent with general equilibrium implications for asset returns in the cross-section when investors have

totally rational and axiomatized asymmetric preferences. The theoretical setup explicitly disentan-

gles the components of an asset premium that are due to the different characteristics of investors’
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behavior, and shows that asymmetric preferences lead to option pricing in the cross-section of stock

returns. These options provide a straightforward way for investors to act on their views of two of

the most closely followed market variables, the market return and changes in market volatility.

Empirical results show that the cross-section of stock returns reflects a premium for bearing unde-

sirable exposures to these options, and that the new cross-sectional model significantly improves

over nested specifications without the option factors.

The paper also derives explicit cross-sectional relations between existing downside risk measures

and betas on the market return, changes in market volatility and option factors. The weights

associated to these relations and how they vary through time and in relation with the business

cycle may constitute an interesting avenue for future research.
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Apppendix

A Different measures of market volatility

A.1 VIX

The daily value of the VIX index is obtained from CBOE through the WRDS service. The variance

of the market is calculated as (V IX/100)2. Since the VIX measures 30-day expected volatility of

the S&P500 Index, we divide this value by 30 to get the daily variance of the market. So, the

change in the daily market variance is calculated as

∆σ2,V IX
W,t =

(V IXt/100)2 − (V IXt−1/100)2

30
(B.1)

A.2 Realized Volatility

To calculate daily realized volatility, we use intra-daily return series of the S&P 500. The data comes

from Olsen Financial Technologies and covers the period between February 1986 and September

2010. Daily realized market variance is calculated as

σ2,RV
W,t =

Nt∑
j=1

r2
j,t , (B.2)

where rj,t denotes the 10-minute log return series with length Nt, on the trading day t. Following

Bandi et al. (2006) we correct the variance estimates for the lack of overnight returns by multiplying

them with a constant factor

ξ =

1
T

T∑
t=1

r2
W,t

1
T

T∑
t=1

σ2,RV
W,t

,

where rW,t denotes daily log returns on the market. The change in the daily market variance is

calculated as

∆σ2,RV
W,t = ξ

(
σ2,RV
W,t − σ

2,RV
W,t−1

)
(B.3)
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A.3 GARCH-type models

In this approach, we fit a model with conditional heteroskedasticity to the daily log market return

series rW,t (the value-weighted average return on all NYSE, AMEX, and NASDAQ stocks from

CRSP). We consider three different models: the standard GARCH(1,1), the EGARCH(1,1,1) by

Nelson (1991) and the GJR-GARCH(1,1,1) by Glosten et al. (1993). The models are given as (the

difference is in the variance equation):

rW,t+1 = µ+ σW,tεt+1 , with εt+1
iid∼ N (0, 1)

GARCH : σ2
W,t+1 = ω + νσ2

W,tε
2
t+1 + φσ2

W,t

EGARCH : ln
(
σ2
W,t+1

)
= ω + ν

(
|εt+1| −

√
2/π

)
+ θεt+1 + φ ln

(
σ2
W,t

)
GJR−GARCH : σ2

W,t+1 = ω + (ν + θI (εt+1 < 0))σ2
W,tε

2
t+1 + φσ2

W,t

(B.4)

The change in the daily market variance is calculated as

∆σ2,model
W,t = σ̂2,model

W,t − σ̂2,model
W,t−1 (B.5)
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Table 1: Coefficients for measures of downside risk

βDM
i,t βDV

i,t βSV
i,t MESi,t

aW,t 1 βDV
W,t 1− βSV

D,tEt [rW,t+1] − (Et [rW,t+1 | Dt+1]− Et [rW,t+1])

aD,t 0 0 (1− πt)βSV
D,t − (1− πt)

aWD,t 1 βDV
W,t 1− βSV

D,tπtEt [rW,t+1 | Dt+1] − (1− πt)Et [rW,t+1 | Dt+1]

aX,t βDM
X,t 1 βSV

X,t − βSV
D,tEt

[
∆σ2

W,t+1

]
−
(
Et

[
∆σ2

W,t+1 | Dt+1

]
− Et

[
∆σ2

W,t+1

])
aXD,t βDM

X,t 1 βSV
X,t − βSV

D,tπtEt

[
∆σ2

W,t+1 | Dt+1

]
− (1− πt)Et

[
∆σ2

W,t | Dt

]
aR,t 0 0 βSV

D,t −1

The entries of the table are expressions of the af,t coefficients in the following relation:

Measurei,t = aW,tβiW,t + aWD,tβiWD,t + aD,tβiD,t + aX,tβiX,t + aXD,tβiXD,t + aR,tEt
[
Rei,t+1

]
,

where Measurei,t denotes different measures for downside risk (βDMi,t , βDVi,t , βSVi,t , and MESi,t),
and within the table, the following notations are used:

βDMX,t ≡
Covt

(
∆σ2

W,t+1, rW,t+1 | Dt+1

)
V art [rW,t+1 | Dt+1]

, βDVW,t ≡
Covt

(
∆σ2

W,t+1, rW,t+1 | Dt+1

)
V art

[
∆σ2

W,t+1 | Dt+1

] ,

βSVX,t ≡
Et

[
rW,t+1∆σ2

W,t+1 | Dt+1

]
Et

[
r2
W,t+1 | Dt+1

] , βSVD,t ≡
Et [rW,t+1 | Dt+1]

Et

[
r2
W,t+1 | Dt+1

] and πt ≡ Probt (Dt+1) .
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Table 2: Estimation Results of the EGARCH model

µ ω ν θ φ

Coeff 4.13E-4 -0.141 0.150 -0.074 0.985
s.e. (0.0001) (0.0098) (0.0050) (0.0031) (0.0010)

The entries of the table are the coefficient estimates of the fol-
lowing Exponential GARCH model specification:

rW,t+1 =µ+ σW,tεt+1

ln
(
σ2
W,t+1

)
=ω + ν

(
|εt+1| −

√
2/π

)
+ θεt+1 + φ ln

(
σ2
W,t

)
εt+1

iid∼N (0, 1)

using daily index return data from January 1963 to December
2010. Robust standard errors of the coefficient estimates are
given in parenthesis.
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Table 3: Average returns of portfolios sorted on different measures of risk

Panel A: equal-weighted portfolios

D1 D2

σiW σiX σiD σiWD σiD σiWD σiXD
Low 5.10 15.82 19.27 4.35 18.71 4.62 16.47
2 7.60 11.97 11.24 7.15 11.88 7.11 12.13
3 9.47 9.54 9.24 8.85 9.23 8.93 9.54
4 11.33 7.81 7.25 11.31 6.57 11.45 7.62
High 17.99 6.19 4.60 20.01 5.16 19.52 5.63

H-L 12.89 -9.63 -14.67 15.66 -13.55 14.90 -10.84
t-stat 3.70 -5.11 -4.14 4.22 -4.47 4.49 -5.60

Panel B: value-weighted portfolios

D1 D2

σiW σiX σiD σiWD σiD σiWD σiXD
Low 6.22 16.44 14.65 6.11 16.88 6.12 16.10
2 6.60 12.31 8.61 6.28 11.93 5.83 12.90
3 7.34 9.92 7.24 7.18 8.73 6.82 9.95
4 8.06 7.90 6.36 9.10 6.14 9.67 8.31
High 12.73 4.64 6.03 15.37 4.57 16.05 5.28

H-L 6.50 -11.81 -8.62 9.26 -12.31 9.93 -10.82
t-stat 1.88 -5.72 -2.42 2.44 -3.36 2.84 -4.78

The table shows the equal-weighted (Panel A) and value-weighted (Panel B) average
returns of stocks sorted by realized covariances. For each month, σ-s are calculated
using daily simple excess returns over the previous 12 months (including the given
month). For each month and each risk measure, we rank stocks into 5 portfolios,
and the average monthly excess returns (over the previous 12 months) of these
portfolios are calculated. The table reports the annualized average return of these
portfolios over the whole sample period (July, 1963 to December, 2010). The row
labelled ”H-L” reports the difference between the returns of portfolio 5 and portfolio
1. The row labelled ”t-stat” is the t-statistics computed using Newey-West (1987)
standard errors with 12 lags for the H-L difference.
D1 corresponds to the disappointing region rW,t < −0.005, while D2 corresponds to
rW,t+1 − 3 (σW /σX) ∆σ2

W,t+1 < −0.005.
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Table 4: Correlations between measures of risk

σiW σiD σiWD σiX σiXD βiW βiD βiWD βiX βiXD

σiW 1.00
σiD -0.43 1.00
σiWD 0.84 -0.43 1.00
σiX -0.06 0.71 -0.06 1.00
σiXD -0.04 0.68 -0.01 0.92 1.00

βiW 0.91 -0.29 0.57 -0.03 -0.01 1.00
βiD 0.05 0.50 0.05 -0.01 -0.00 0.11 1.00
βiWD 0.02 0.00 0.51 0.02 0.03 -0.33 0.24 1.00
βiX -0.03 0.04 -0.01 0.41 0.07 -0.09 -0.35 0.07 1.00
βiXD 0.07 0.02 0.05 0.06 0.42 0.12 -0.14 -0.17 -0.74 1.00

The table shows the correlation matrix of several measures of risk connected to our analysis.
At every month t ≥ 12, we calculate the cross-sectional correlations between the estimated risk
measures using daily data from month t−11 to t. The reported values are the time-series averages
of these cross-sectional correlations over the sample. The sample period is from July, 1963 to
December, 2010.
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Table 8: Fama-Macbeth regressions with different measures of market volatility

Panel A: 1964/07-2010/12
VIX RV GARCH EGARCH GJR-GARCH

Cons 0.0024 0.0018 0.0018
(0.0019) (0.0018) (0.0018)

λW 0.0064∗∗∗ 0.0064∗∗∗ 0.0065∗∗∗

(0.0017) (0.0017) (0.0017)
λD -0.4803∗∗∗ -0.4729∗∗∗ -0.4951∗∗∗

(0.0642) (0.0847) (0.0772)
λWD 0.0051∗∗∗ 0.0055∗∗∗ 0.0054∗∗∗

(0.0009) (0.0009) (0.0009)
λX -6.6E-6∗∗∗ -6.5E-6∗∗ -7.1E-6∗∗∗

(1.6E-6) (2.7E-6) (2.6E-6)
λXD -4.9E-6∗∗∗ -6.6E-6∗∗∗ -6.4E-6∗∗∗

(1.3E-6) (2.3E-6) (2.3E-6)

adj R2 0.0565 0.0643 0.0632

Economic magnitudes (annualized %)
λW 6.02 6.11 6.13
λD -4.47 -4.59 -4.89
λWD 4.35 4.63 4.65
λX -5.67 -5.84 -6.96
λXD -5.36 -7.35 -7.64

Panel B: 1987/01-2010/09
VIX RV GARCH EGARCH GJR-GARCH

Cons 0.0033 0.0035 0.0035 0.0027 0.0028
(0.0027) (0.0028) (0.0027) (0.0027) (0.0027)

λW 0.0066∗∗∗ 0.0066∗∗ 0.0068∗∗∗ 0.0068∗∗∗ 0.0068∗∗∗

(0.0025) (0.0026) (0.0026) (0.0025) (0.0025)
λD -0.2061∗∗∗ -0.2769∗∗∗ -0.3058∗∗∗ -0.4819∗∗∗ -0.4716∗∗∗

(0.0719) (0.0836) (0.0686) (0.1097) (0.0986)
λWD 0.0061∗∗∗ 0.0049∗∗∗ 0.0052∗∗∗ 0.0055∗∗∗ 0.0055∗∗∗

(0.0019) (0.0016) (0.0013) (0.0014) (0.0014)
λX -5.1E-5 -2.6E-5 -5.2E-6∗ -6.7E-6 -7.3E-6

(3.5E-5) (2.5E-5) (2.9E-6) (5.0E-6) (4.8E-6)
λXD -6.8E-5∗ -3.2E-5 -3.4E-6 -6.8E-6 -6.1E-6

(4.0E-5) (2.2E-5) (2.2E-6) (4.2E-6) (4.2E-6)

adj R2 0.0424 0.0374 0.0389 0.0474 0.0462

Economic magnitudes (annualized %)
λW 7.27 6.45 5.96 6.13 6.08
λD -2.10 -2.82 -3.48 -5.30 -5.30
λWD 7.21 4.06 4.39 4.56 4.68
λX -2.07 -2.89 -3.74 -5.90 -6.27
λXD -4.58 -4.54 -3.17 -7.18 -6.82

The Table presents results of Fama-MacBeth (1973) regressions using different approaches to measure
market volatility. Appendix A describes the different approaches. For each month t the realized β-s
are calculated using daily data over the previous 12 months (months t − 11 to t). The dependent
variable in the cross-sectional regression for each month t is the average monthly excess return over
the same period (previous 12 months: t− 11 to t). The standard errors (in parenthesis) are corrected
for 12 Newey-West (1987) lags.
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Table 10: Fama-Macbeth regressions on portfolios

25 25 25 30 10 Size,
Size - B/M Size - Mom Size - LRev Industry 10 B/M,

10 Mom
C

A
P

M λW 0.0064∗∗∗ 0.0068∗∗∗ 0.0075∗∗∗ 0.0054∗∗∗ 0.0052∗∗∗

(0.0019) (0.0019) (0.0019) (0.0017) (0.0017)

SSE 0.0017 0.0022 0.0017 0.0041 0.0015

G
D

A
3

λW 0.0052∗∗∗ 0.0053∗∗∗ 0.0062∗∗∗ 0.0052∗∗∗ 0.0047∗∗∗

(0.0017) (0.0017) (0.0018) (0.0017) (0.0017)
λD -0.7783∗∗ -0.9482∗∗∗ -1.0619∗∗∗ -0.5945∗∗ -0.8828∗∗∗

(0.3218) (0.3034) (0.2975) (0.2438) (0.2409)
λWD 0.0120∗∗∗ 0.0172∗∗∗ 0.0156∗∗∗ 0.0085∗∗∗ 0.0101∗∗∗

(0.0037) (0.0039) (0.0035) (0.0022) (0.0036)

SSE 0.0010 0.0013 0.0010 0.0033 0.0009

G
D

A
5

λW 0.0047∗∗∗ 0.0048∗∗∗ 0.0054∗∗∗ 0.0049∗∗∗ 0.0046∗∗∗

(0.0016) (0.0017) (0.0017) (0.0016) (0.0016)
λD -0.7255∗∗ -1.1974∗∗∗ -0.8148∗∗∗ -0.7842∗∗∗ -0.6165∗∗

(0.3358) (0.3146) (0.2832) (0.2435) (0.2690)
λWD 0.0072∗∗ 0.0108∗∗∗ 0.0084∗∗∗ 0.0088∗∗∗ 0.0089∗∗∗

(0.0034) (0.0035) (0.0032) (0.0024) (0.0028)
λX -1.1E-5 -3.0E-5∗∗∗ -2.1E-5∗∗∗ -1.8E-5∗∗∗ -1.6E-5∗

(8.2E-6) (1.1E-5) (7.7E-6) (6.6E-6) (9.5E-6)
λXD -1.0E-5∗∗ -2.1E-5∗∗∗ -1.9E-5∗∗∗ -3.6E-6 -9.1E-6∗

(5.1E-6) (7.4E-6) (6.2E-6) (6.5E-6) (5.4E-6)

SSE 0.0007 0.0009 0.0007 0.0027 0.0007

F
ou

r-
fa

ct
or

λW 0.0043∗∗∗ 0.0051∗∗∗ 0.0051∗∗∗ 0.0053∗∗∗ 0.0046∗∗∗

(0.0016) (0.0017) (0.0017) (0.0016) (0.0016)
λSMB 0.0020 0.0025∗ 0.0033∗∗∗ 0.0007 0.0012

(0.0013) (0.0013) (0.0012) (0.0013) (0.0013)
λHML 0.0037∗∗∗ 0.0030 0.0032∗∗ 0.0002 0.0020∗

(0.0012) (0.0019) (0.0016) (0.0010) (0.0011)
λWML 0.0131∗∗∗ 0.0064∗∗∗ 0.0080∗∗∗ 0.0189∗∗∗ 0.0050∗∗∗

(0.0022) (0.0017) (0.0018) (0.0014) (0.0015)

SSE 0.0005 0.0007 0.0006 0.0021 0.0005

The Table presents results of Fama-MacBeth regressions. The base assets are
portfolios. For each month t the realized β-s are calculated using daily data
over the previous 12 months (months t− 11 to t). The dependent variable in the
cross-sectional regression for each month t is the average monthly excess return
over the same period (previous 12 months - t − 11 to t). The standard errors
(in parenthesis) are corrected for 12 Newey-West (1987) lags. The row labelled
“SSE” presents the average sum of squared pricing errors for the given model.
The sample period is from July, 1963 to December, 2010.
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Table 11: Decomposing the excess return of portfolios

Size Book-to-Market Momentum
S1 S10 S10-S1 B1 B10 B10-B1 M1 M10 M10-M1

Actual Return 8.01 4.07 -3.93 3.73 10.22 6.50 -2.02 12.42 14.45

C
A

P
M

λW 4.23 6.66 2.44 7.07 6.54 -0.53 5.15 9.24 4.08

predicted 4.23 6.66 2.44 7.07 6.54 -0.53 5.15 9.24 4.08
unexplained 3.78 -2.59 -3.35 3.68 -7.18 3.19

F
ou

r-
fa

ct
or

λW 4.58 5.34 0.76 5.47 6.40 0.92 6.66 6.21 -0.44
λSMB 1.51 -0.24 -1.75 -0.23 1.10 1.33 -0.71 0.99 1.70
λHML 0.66 -0.29 -0.94 -1.33 2.15 3.48 -0.35 -0.14 0.21
λWML -0.08 -0.23 -0.16 0.09 -0.06 -0.15 -4.77 4.27 9.04

predicted 6.67 4.59 -2.09 4.00 9.59 5.59 0.84 11.34 10.51
unexplained 1.33 -0.51 -0.27 0.63 -2.86 1.08

G
D

A
3

λW 2.86 6.31 3.45 6.50 5.64 -0.87 4.22 8.02 3.81
λD -0.84 0.26 1.10 0.60 0.18 -0.43 -0.28 0.19 0.48
λWD 5.00 -1.58 -6.58 -1.94 1.35 3.28 -1.00 2.11 3.10

predicted 7.02 4.99 -2.03 5.17 7.16 1.99 2.94 10.32 7.39
unexplained 0.98 -0.92 -1.44 3.06 -4.96 2.10

G
D

A
5

λW 2.98 6.12 3.14 6.31 5.40 -0.91 4.04 7.88 3.84
λD 0.20 0.08 -0.13 -0.41 0.35 0.76 -0.10 -0.04 0.07
λWD 2.07 -0.74 -2.81 -0.89 1.37 2.27 -1.23 1.78 3.00
λX -0.68 0.49 1.17 0.91 0.36 -0.55 -0.58 0.24 0.82
λXD 2.79 -1.25 -4.04 -1.14 0.96 2.10 -0.23 1.10 1.32

predicted 7.37 4.69 -2.67 4.76 8.43 3.67 1.90 10.95 9.05
unexplained 0.64 -0.62 -1.04 1.79 -3.93 1.47

The Table shows the actual average excess returns of size (S1 and S10), book-to-market (B1 and B10)
and momentum (M1 and M10) portfolios, as well as their parts that are predicted and unexplained by the
CAPM, the four-factor model and the GDA models, as well as the decomposition of the predicted premium
into parts attributable to the different factors.
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Figure 1: Actual versus predicted returns of portfolios

10 Size, 10 Book-to-Market, and 10 Momentum portfolios

(a) CAPM (b) Four-factor
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(c) GDA3 (d) GDA5
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This figure shows the realized average excess returns for the 10 size (S1 to S10), 10 book-to-market (B1
to B10), 10 momentum (M1 to M10) portfolios, against the predicted average excess returns from models
reported in Table 10.
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Figure 2: Returns on the 10 Size, 10 Book-to-Market and 10 Momentum portfolios
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This figure shows the decomposition of the predicted average excess return of 10 Size (left column), 10 B/M (middle column),
and 10 momentum (right column) portfolios. Each part represents E

[
βif,tλf,t

]
connected to factor f from the standard

CAPM in the top row, the four-factor model in the middle row, and the GDA5 model bottom row. The symbol 4 represents
predicted average excess return (sum of the parts), while ◦ represents the actual average excess return of the portfolios.

53


